• Biologie

  • Ressources et infrastructures

  • Poumon

Tumor-Infiltrating Clonal Hematopoiesis

Menée à partir de données portant sur 49 772 patients atteints d'un cancer, cette étude examine l'association entre la présence intratumorale d'une hématopoïèse clonale et la survie ou le risque de récidive puis évalue les effets d'une hématopoïèse clonale de potentiel indéterminé avec mutation du gène TET2 sur les caractéristiques biologiques des tumeurs pulmonaires

Background : Clonal hematopoiesis of indeterminate potential (CHIP) is an age-related condition associated with increased mortality among patients with cancer. CHIP mutations with high variant-allele frequencies can be detected in tumors, a phenomenon we term tumor-infiltrating clonal hematopoiesis (TI-CH). The frequency of TI-CH and its effect on tumor evolution are unclear.

Methods : We characterized CHIP and TI-CH in 421 patients with early-stage non–small-cell lung cancer (NSCLC) from the TRACERx study and in 49,351 patients from the MSK-IMPACT pan-cancer cohort. We studied the association of TI-CH with survival and disease recurrence and evaluated the functional effect of TET2-mutant CHIP on the biologic features of lung tumors.

Results : Among patients with NSCLC, 42% of those with CHIP had TI-CH. TI-CH independently predicted an increased risk of death or recurrence, with an adjusted hazard ratio of 1.80 (95% confidence interval [CI], 1.23 to 2.63) as compared with the absence of CHIP and an adjusted hazard ratio of 1.62 (95% CI, 1.02 to 2.56) as compared with CHIP in the absence of TI-CH. Among patients with solid tumors, 26% of those with CHIP had TI-CH. TI-CH conferred a risk of death from any cause that was 1.17 times (95% CI, 1.06 to 1.29) as high as the risk with CHIP in the absence of TI-CH. TET2 mutations were the strongest genetic predictor of TI-CH; such mutations enhanced monocyte migration to lung tumor cells, fueled a myeloid-rich tumor microenvironment in mice, and resulted in the promotion of tumor organoid growth.

Conclusions : TI-CH increased the risk of disease recurrence or death among patients with NSCLC and the risk of death from any cause among patients with solid tumors. TI-CH remodeled the tumor immune microenvironment and accelerated tumor organoid growth, findings that support a role for an aging-related hematologic clonal proliferation in cancer evolution. (Funded by the Royal Society and others.)

New England Journal of Medicine , résumé 2025

View the bulletin