Prevention of hepatocellular carcinoma by targeting MYCN-positive liver cancer stem cells with acyclic retinoid
Menée sur des cellules de carcinome hépatocellulaire et sur des modèles animaux, puis menée à partir d'échantillons biopsiques prélevés sur des patients, cette étude analyse l'intérêt de cibler, à l'aide d'un rétinoïde acyclique (un composé synthétique similaire à la vitamine A), les cellules souches cancéreuses exprimant MYCN pour réduire le risque de récidive
Hepatocellular carcinoma (HCC) is a highly lethal cancer, partly because of its high rate of recurrence, which is caused by the presence of liver cancer stem cells (CSCs). Here, using a selective chemopreventive agent, acyclic retinoid (ACR), as a bioprobe, we identified MYCN, which is mostly recognized as an oncogene in neuroblastoma, as a therapeutic target of ACR for HCC through a selective deletion of MYCN+ liver CSCs. We also demonstrated that the expression of MYCN in HCC served as a prognostic biomarker and positively correlated with recurrence of de novo HCC after curative treatment. Our study highlighted MYCN as a biomarker and therapeutic target in drug discovery for screening chemopreventive agents against the recurrence of HCC.Hepatocellular carcinoma (HCC) is a highly lethal cancer that has a high rate of recurrence, in part because of cancer stem cell (CSC)-dependent field cancerization. Acyclic retinoid (ACR) is a synthetic vitamin A-like compound capable of preventing the recurrence of HCC. Here, we performed a genome-wide transcriptome screen and showed that ACR selectively suppressed the expression of MYCN, a member of the MYC family of basic helix–loop–helix–zipper transcription factors, in HCC cell cultures, animal models, and liver biopsies obtained from HCC patients. MYCN expression in human HCC was correlated positively with both CSC and Wnt/β-catenin signaling markers but negatively with mature hepatocyte markers. Functional analysis showed repressed cell-cycle progression, proliferation, and colony formation, activated caspase-8, and induced cell death in HCC cells following silencing of MYCN expression. High-content single-cell imaging analysis and flow cytometric analysis identified a MYCN+ CSC subpopulation in the heterogeneous HCC cell cultures and showed that these cells were selectively killed by ACR. Particularly, EpCAM+ cells isolated using a cell-sorting system showed increased MYCN expression and sensitivity to ACR compared with EpCAM− cells. In a long-term (>10 y) follow-up study of 102 patients with HCC, MYCN was expressed at higher levels in the HCC tumor region than in nontumor regions, and there was a positive correlation between MYCN expression and recurrence of de novo HCC but not metastatic HCC after curative treatment. In summary, these results suggest that MYCN serves as a prognostic biomarker and therapeutic target of ACR for liver CSCs in de novo HCC.